Cupric Ions Induce the Oxidation and Trigger the Aggregation of Human Superoxide Dismutase 1
نویسندگان
چکیده
BACKGROUND Amyotrophic lateral sclerosis (ALS), partly caused by the mutations and aggregation of human copper, zinc superoxide dismutase (SOD1), is a fatal degenerative disease of motor neurons. Because SOD1 is a major copper-binding protein present at relatively high concentration in motor neurons and copper can be a harmful pro-oxidant, we want to know whether aberrant copper biochemistry could underlie ALS pathogenesis. In this study, we have investigated and compared the effects of cupric ions on the aggregation of ALS-associated SOD1 mutant A4V and oxidized wild-type SOD1. METHODOLOGY/PRINCIPAL FINDINGS As revealed by 90° light scattering, dynamic light scattering, SDS-PAGE, and atomic force microscopy, free cupric ions in solution not only induce the oxidation of either apo A4V or Zn2-A4V and trigger the oligomerization and aggregation of oxidized A4V under copper-mediated oxidative conditions, but also trigger the aggregation of non-oxidized form of such a pathogenic mutant. As evidenced by mass spectrometry and SDS-PAGE, Cys-111 is a primary target for oxidative modification of pathological human SOD1 mutant A4V by either excess Cu(2+) or hydrogen peroxide. The results from isothermal titration calorimetry show that A4V possesses two sets of independent binding sites for Cu(2+): a moderate-affinity site (10(6) M(-1)) and a high-affinity site (10(8) M(-1)). Furthermore, Cu(2+) binds to wild-type SOD1 oxidized by hydrogen peroxide in a way similar to A4V, triggering the aggregation of such an oxidized form. CONCLUSIONS/SIGNIFICANCE We demonstrate that excess cupric ions induce the oxidation and trigger the aggregation of A4V SOD1, and suggest that Cu(2+) plays a key role in the mechanism of aggregation of both A4V and oxidized wild-type SOD1. A plausible model for how pathological SOD1 mutants aggregate in ALS-affected motor neurons with the disruption of copper homeostasis has been provided.
منابع مشابه
Novel peptoids for the detection and suppression of reactive oxygen and nitrogen species.
Novel peptoids useful for the detection and suppression of various components contributing to oxidative stress and for elucidation of the interplay between these species are presented. Oxidative stress involves redox-active metal ion activation/generation of RONS (reactive oxygen and nitrogen species). For detection of RONS, the peptoid probes consist of a conjugate designed to (1) complex redo...
متن کاملMechanisms of copper- and iron-dependent oxidative modification of human low density lipoprotein.
Oxidative modification of low density lipoprotein (LDL) has been suggested as a causal step in atherosclerosis, and both redox-active transition metal ions and superoxide (O2.-) have been implicated in this process. In order to determine the mechanisms of metal ion-dependent oxidation of LDL in the presence of O2.-, LDL was exposed to hypoxanthine (HX) and purified xanthine oxidase (XO) without...
متن کاملThe Role of Metal Binding in the Amyotrophic Lateral Sclerosis-Related Aggregation of Copper-Zinc Superoxide Dismutase.
Protein misfolding and conformational changes are common hallmarks in many neurodegenerative diseases involving formation and deposition of toxic protein aggregates. Although many players are involved in the in vivo protein aggregation, physiological factors such as labile metal ions within the cellular environment are likely to play a key role. In this review, we elucidate the role of metal bi...
متن کاملFragmentation and dimerization of copper-loaded prion protein by copper-catalysed oxidation.
Prion protein consists of an N-terminal domain containing a series of octapeptide repeats with the consensus sequence PHGGGWGQ and a C-terminal domain composed of three alpha-helices and two short beta-strands. Several studies have shown that the N-terminal domain binds five Cu2+ ions. In the present study, we have investigated copper-catalysed oxidation of a recombinant mouse prion protein, Pr...
متن کاملHighly selective detection of Cu2+ utilizing specific binding between Cu-demetallated superoxide dismutase 1 and the Cu2+ ion via surface plasmon resonance spectroscopy.
A highly specific interaction between a metal-deficient metalloenzyme and metal ion has been utilized in the selective detection of the metal ion by surface plasmon resonance spectroscopy (SPRS). The use of SPRS and Cu-demetallated superoxide dismutase (E,Zn-SOD1) as a sensing actuator allows one to selectively and in situ detect Cu2+ without any interference that other spectroscopic methods ma...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2013